

INDUSTRIAL ELECTRIC HEATERS

Circulation Heaters
Flanged Immersion Heaters
Screw Plug Immersion Heaters
Casings • Assemblies • Accessories

ELECTRIC
PROCESS HEATER
SOLUTIONS
BEGIN HERE...

Electric heaters are our only business.

We are specialists in designing, engineering, and manufacturing both standard and custom Electric Process Heaters.

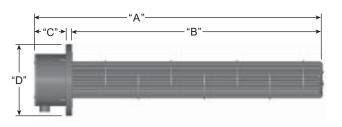
WARREN ELECTRIC CORPORATION

36 Franklin Street, PO Box 86, Warren, Rhode Island 02885-0086 USA
Toll Free: 1-877-399-HEAT (4328) Tel: 401-245-3700 Fax: 401-245-9331

Email: wec@warrenonline.com
ISO 9001 Registered

www.warrenonline.com
ASME ACCREDITED

Flanged Immersion Heaters


SPECIFICATIONS:

Watts: to 800 Kilowatts

Volts/Phase: to 600 Volts, Single or 3 Phase Flange Size: to 24" ANSI, Custom Sizes

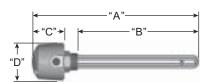
Flange Material: Carbon Steel, Stainless Steel, Incoloy Pressure Rating: ANSI to 1500 PSIG, Custom to 300 PSIG

Immersion Length: to 144"

Flanged Immersion Heaters to suit your application requirements.

Screw Plug Immersion Heaters

SPECIFICATIONS:


Watts: to 100 Kilowatts

Volts/Phase: to 600 Volts, Single or 3 Phase

Screw Plug Size: 1" to 4" NPT

Screw Plug Material: Steel, Stainless Steel, or Brass/Bronze

Pressure Rating: 300 PSIG Immersion Length: to 144"

Screw Plug Immersion Heaters designed in a wide range of models, ratings, materials, and capacities for mounting into standard threaded openings.

Flanged, Screw Plug, & Circulation-**Heater Options:**

- A wide selection of Watt Densities, Power Ratings, and
- Element Sheath Materials including Steel, Copper, Stainless Steel(s), Incoloy(s), and Inconel.
- Refer to page 9 for an abbreviated recommended Watt Density Chart.
- Brazed, Welded, or Removable elements.
- Thermostats available in a variety of ranges, multiple types of Thermocouples, RTDs, and hi-limit switches available in a thermowell or strapped to the element sheath.
- Terminal Enclosure choices include General Purpose (std.), Weather-Resistant, Explosion-Resistant, Rotating, Economy, Helmet Head, and Extended Head for High-Temperature Applications. NEMA equivalent enclosures available.
- Standard and custom Gaskets in a variety of materials, types, and sizes.
- May be supplied with Power Distribution Blocks for Multiple Circuits.
- Copper ("wet" side) Face Plates on flanged water heater designs available to reduce corrosion.
- Certifications on many models including UL listings, ASME Certification, CE Conformance.
- Passivation or Electropolishing available on Stainless Steel and Incoloy sheathed elements.
- Center core Baffles for increased velocity and staggered baffle plates available to increase turbulence for better heat transfer.
- ASME Code Certification and National Board of Boiler and Pressure Vessels Registration available.

Circulation Heaters

SPECIFICATIONS:

Available in Flanged & Screw Plug Designs

Inlet/Outlet: FNPT coupling (std.), MNPT thd. pipe,

beveled pipe, or flanged

Insulation: 1" Calcium Silicate (std.) with steel jacket,

to 2", available without insulation

· Mounting U-bolts (std.) on insulated heaters, support legs, & custom mounting blocks available on insulated or uninsulated designs.

Circulation Heaters with high temperature insulation and steel jackets. Also available without insulation and jackets for lower temperature applications. (A cost savings to you.)

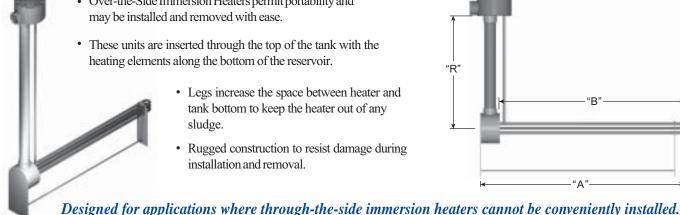
www.warrenonline.com

For more information or a quick quotation, please use our 'Quick Quote" on the back of this brochure, or CALL, FAX, WRITE, or EMAIL us!

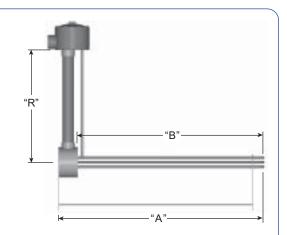
TOLL FREE: 1-877-399-HEAT (4328) TEL: 401-245-3700 FAX: 401-245-9331

EMAIL: wec@warrenonline.com

Casings & Assemblies


Casings assembled with your electric immersion heaters with options of your choice.

- Flanged or screw plug designs. Overall, immersed lengths, and inlet and outlet dimensions varied to suit your application.
- Casings can be assembled and constructed in assemblies. Design variations are virtually limitless with your choice of configurations. (See circulation heater section on page 1 for additional specifications)
- ASME Code Certification and National Board of Boiler and Pressure Vessels Registration available.


ELECTRIC PROCESS HEATER SOLUTIONS BEGIN HERE.

Over-the-Side Heaters

BR-101

- Over-the-Side Immersion Heaters permit portability and may be installed and removed with ease.
- These units are inserted through the top of the tank with the heating elements along the bottom of the reservoir.
 - Legs increase the space between heater and tank bottom to keep the heater out of any
 - Rugged construction to resist damage during installation and removal.

Please contact our Applications Engineers who will gladly assist you in determining your heating application solution.

TOLL FREE: 1-877-399-HEAT (4328) FAX: 401-245-9331 TEL: 401-245-3700

EMAIL: wec@warrenonline.com

www.warrenonline.com

Standard & Custom Heaters Manufactured to Heat...

Acid Solutions ... Air... Caustic Solutions ... Chemicals ... **Degreasing Solutions ... Deionized Water...** Ethylene Glycol ... Fuel Oils ... Heat Transfer Fluids ... Hydraulic Oils ...

Parts Cleaning Solutions ... Petroleum Products ... Process Water ... Saline Solutions ...

Liquid Mixtures ...

Salt Baths ...

Steam ...

Oils ...

Steam Generation ... Vapors ...

Water Purification ...

Water...

And more!

Water Heaters

- Deionized, Demineralized, Clean, Potable, Process
- WEC aqueous based heaters may be UL Listed.
- WEC manufactures Water Heaters in either a Flanged or Screw Plug design.
- Heaters may have brazed, welded, or removable elements. We suggest that elements be welded to the Flange or Screw Plug if the aqueous solution is corrosive to silver alloy.
- Process Water Heaters have the capability of heating aqueous solutions to be used in parts cleaning and other chemical industrial applications.
- Deionized Water Heaters are generally used in medical and pharmaceutical industries where sterilized environments are critical.
- The chemical make up of deionized water is corrosive, therefore requiring passivation of both the Flange/Screw Plug and elements. Passivation is a chemical bath that removes free iron from the surface of Stainless Steel and Incoloy. If further protection is needed, electropolishing is recommended.

Chemical Heaters

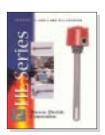
- WEC manufactures Chemical Heaters to heat a wide range of chemicals or solutions.
- Specific application information is needed to determine watt density, whether the heater should be directly or indirectly immersed, Flange/Screw Plug material, and element sheath material.
- Examples of Chemical Heater applications:

Acetone Alcohol Ammonia (Gas) Ammonium Acetate Amyl Alcohol Barium Hydroxide Butyl Acetate Calcium Bisulfate Calcium Chloride Carbon Tetra Chloride Ethylene Glycol

Formaldehyde Hydrogen Sulfide Magnesium Sulfate Methychloride Potassium Chlorate Potassium Chloride Sodium Hydroxide Sodium Phosphate Sulfur (Molten) and more...

Circulation Heater, shown with cut away section to show insulation and metal iacket.

EMAIL: wec@warrenonline.com


ELEMENT SHEATH MATERIALS ...FLANGE TYPES ... SCREW PLUGS ..TERMINAL ENCLOSURES ...THERMOSTATS, THERMOWELLS, AND/OR **THERMOCOUPLES** ...PRESSURE VESSELSTO MEET YOUR REQUIREMENTS.

Hydraulic & Lube Oil Heaters

- WEC manufactures a complete line of heaters designed specifically for hydraulic or lube oil with low watt densities to allow direct immersion into storage vessels.
- These heaters are used to maintain a desired temperature within hydraulic or lube oil reservoirs.

WEC offers a catalog with standard listings of hydraulic and lube oil heaters. Many custom designs are also available. Ask for the HL-100 Catalog.

· Typical applications include fluid power, compressors, hydraulics, turbines, and bearings.

Please give us your specifications and allow us to recommend a solution to your electric heater needs...

www.warrenonline.com

TOLL FREE: 1-877-399-HEAT (4328) TEL: 401-245-3700 FAX: 401-245-9331

Parts Cleaning Heaters

- Warren Electric Corporation manufactures a complete line of Parts Cleaning Heaters used in the parts cleaning industry. They are used to heat water or an aqueous based chemical solution.
- · The most common heaters used are the Process Water Heater, Solution Water Heater, and Chemical Heater.
- Warren Electric Corporation offers UL Listed heaters for Aqueous Based Solutions!
- As an alternative to your screw plug design, consider the WEC "AB" Flanged Immersion Heater described below.

Fuel Oil Heaters -

- Warren Electric Corporation provides the largest selection of Fuel Oil heaters.
- Our Electric Oil Preheaters can be provided in a Flanged or Screw Plug design.
- Custom fuel oil heater designs no matter what the size - are also our specialty.

WEC'S OH-2 Fuel Oil Heater Catalog, with over 400 UL Listed standard models to choose from, is the industry's most comprehensive catalog for Fuel Oil heating.

"AB" Flanged Heaters

- Includes all the options available with NPT Screw Plug heaters but flanged design makes replacement easier. "AB" Flanged Heaters can be easily removed and installed using a 7/16" ratchet.
- Designed to fit in 2", 2-1/2", and 3" pipe.
- · Tank adaptors for mounting these heaters are available.

Consider as an alternative to your Screw Plug design! Contact us for a brochure on the "AB" series.

BR-101

High-Temperature Heaters

- "Extended Head" Heaters are designed and recommended for hightemperature applications where the fluid temperature exceeds 450° F.
- The terminal enclosure is separated from the flange by an air gap to lower the ambient temperature of the electrical wiring in the terminal enclosure.
- Standard design includes welded elements.
- Operating and/or high limit temperature thermocouples and pressure vessel assemblies are available. (ASME certification also available)

Circulation Heater with ASME certified casing and "Extended Head" terminal enclosure.

Heat Transfer Fluid Heaters

- Heaters designed specifically for heat transfer fluids. Typical applications include gases, water, and steam.
- Heat Transfer Fluids allow for heating another medium without direct contact between the electric immersion heater and the heated medium.

Thermostats and Accessories

- · Thermostats, thermowells, thermocouples, RTD's, and a variety of temperature sensors.
- Gaskets come in a large variety of materials and types.
- · Custom made casings and assemblies.

Resistant

Terminal

Standard & Custom **Heaters for Industries Including:**

Chemical ...

Cryogenics ...

Custom Machinery...

Degreasing ...

Distillation ...

Fluid Power ...

Freeze Protection ...

Hydraulics ...

Medical ...

Oils ...

Paper ...

Parts Cleaning ...

Petroleum ...

Pharmaceutical ...

Plastic ...

Plating...

Reclaiming Fluids ...

Recycling ...

Rubber...

Steam Generation ...

Water Purification ...

And more!

WARREN ELECTRIC CORPORATION, AN ISO 9001 REGISTERED COMPANY, ALSO IS **CAPABLE AND ACCREDITED TO MANUFACTURE AND CERTIFY HEATERS AND CASINGS WITH THE ASME** "U" OR "UM" STAMP.

...and/or please complete the WEC 'Quick Quote" form on the back of this brochure for assistance and Call or FAX!

> TOLL FREE: 1-877-399-HEAT (4328) TEL: 401-245-3700 FAX: 401-245-9331

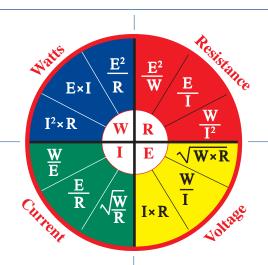
Reference Data

OHM'S Law

Watts = W = Power

Watts = $\frac{\text{Volts}^2}{\text{Ohms}}$

Watts = Volts × Amps


Watts = $Amps^2 \times Ohms$

Amps = I = Current

Amps = $\frac{\text{VVatts}}{\text{Volts}}$

 $Amps = \frac{Volts}{Ohms}$

Amps = $\sqrt{\frac{\text{Watts}}{\text{Ohms}}}$

 V_p = Phase Voltage V_L = Line Voltage I_p = Phase Current I_L = Line Current $R = R_1 = R_2 = R_3 =$ Resistance of each branch

W = Wattage

Ohms = R = Resistance

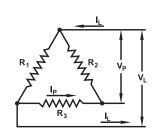
Ohms = $\frac{\text{Volts}^2}{\text{Wotte}}$

Ohms = $\frac{\text{Volts}}{\text{Amps}}$

Ohms = $\frac{\text{Watts}}{\text{Amps}^2}$

Volts = E = Voltage

Volts = √Watts × Ohms

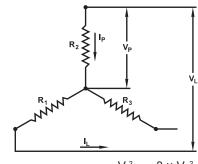

Volts = $\frac{\text{Watts}}{\text{Amps}}$

Volts = Amps × Ohms

FIG. 5.1

Delta & Wye Circuit Equations

Delta (Balanced Load)


 $I_p = \frac{I_L}{1.73}$

$$W_{DELTA} = \frac{3 \times V_L^2}{R}$$

 $V_p = V_1$

 $W_{DELTA} = 1.73 \times V_{L} \times I_{L}$

Wye (Balanced Load)

 $I_{p} = I_{L}$ $V_{D} = \frac{V_{L}}{4.76}$

 $V_{\text{WYE}} = \frac{V_{\text{L}}^2}{R} = \frac{3 \times V_{\text{F}}}{R}$

 $W_{WYE} = 1.73 \times V_{L} \times I_{L}$

Important Formulas

Determining Required Power:

$$P = \frac{FR \times g_c \times C_p \times \Delta T}{3412} \times SF$$

P = Power [KW]

FR = Flow Rate [gal/hr]

g_c = Density of Fluid [lb/gal]

Cp = Specific heat of Fluid [BTU/(lb.°F)]

 ΔT = Temperature Differential [°F]

SF = Safety Factor of 1.2 (typ. 20%)

3412 = Conversion Factor [BTU/(KW·hr)]

Determining Actual Power Output:

$$P_{ACT} = P_{DES} \times \left(\frac{V_{ACT}}{V_{DES}}\right)^{2}$$

P_{ACT} = Actual Power [Watts]

P_{DES} = Designed Power [Watts]

 V_{ACT} = Actual Voltage [V]

V_{DES} = Designed Voltage [V]

Amperage:

$$I_{1PH} = \frac{P_{ACT}}{V_{ACT}}$$

$$I_{3PH} = \frac{P_{ACT}}{V_{ACT} \times 1.73}$$

I_{1PH} = Single Phase Current [A] P_{ACT} = Actual Power [Watts]

V_{ACT} = Actual Voltage [V]

EMAIL: wec@warrenonline.com

 I_{3PH} = Three Phase Current [A]

Fraction Equivalents

Fraction	Dec.	mm	Fraction	Dec.	mm
1/32	.03125	0.794	17/32	.53125	13.494
¹ / ₁₆	.0625	1.588	⁹ /16	.5625	14.288
3/32	.09375	2.381	¹⁹ / ₃₂	.59375	15.081
1/8	.1250	3.175	⁵ / ₈	.6250	15.875
5/32	.15625	3.969	²¹ / ₃₂	.65625	16.669
³ / ₁₆	.1875	4.763	¹¹ / ₁₆	.6875	17.463
⁷ / ₃₂	.21875	5.556	²³ / ₃₂	.71875	18.256
1/4	.2500	6.350	3/4	.7500	19.050
9/32	.28125	7.144	²⁵ / ₃₂	.78125	19.844
⁵ / ₁₆	.3125	7.938	¹³ / ₁₆	.8125	20.638
11/32	.34375	8.731	²⁷ / ₃₂	.84375	21.431
3/8	.3750	9.525	⁷ /8	.8750	22.225
13/32	.40625	10.319	²⁹ / ₃₂	.90625	23.019
⁷ / ₁₆	.4375	11.113	¹⁵ /16	.9375	23.813
15/32	.46875	11.906	³¹ / ₃₂	.96875	24.606
1/2	.5000	12.700	1	1.000	25.400

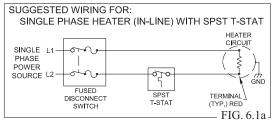
FIG. 5.3

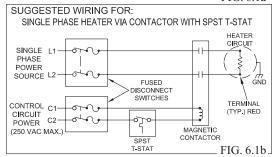
TOLL FREE: 1-877-399-HEAT (4328)

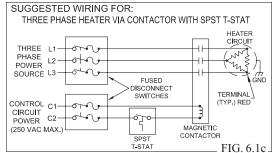
TEL: 401-245-3700

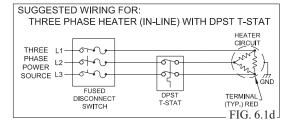
FAX: 401-245-9331

Page 5


BR-101






Reference Data

Kilowatt Hours (KWH) To Heat Water

	UNT	TEMPERATURE RISE (°F)									
of f	LUID GAL.	20°	40°	60°	80°	100°	120°	140°			
1.3	10	0.6	1.2	1.8	2.3	2.9	3.5	4.1			
6.7	50	2.9	5.9	8.8	11.7	14.6	17.6	20.5			
13.3	100	5.9	11.7	17.6	23.4	29.3	35.1	41.0			
26.7	200	11.7	23.4	35.1	46.8	58.6	70.3	82.0			
66.7	500	29.3	58.6	87.8	117.1	146.4	175.7	204.9			

Based on a specific heat of 1.0 and implied 20% safety factor.

KWH = Gallons×Temperature Rise(°F)

Kilowatt Hours (KWH) To Heat Oil

AMOUNT OF FLUID		TEMPERATURE RISE (°F)									
ft ³	GAL.	50°	100°	150°	200°	300°	400°	500°			
1.3	10	0.6	1.1	1.7	2.2	3.4	4.5	5.6			
6.7	50	2.8	5.6	8.4	11.2	16.8	22.4	28.0			
13.3	100	5.6	11.2	16.8	22.4	33.6	44.8	56.0			
26.7	200	11.2	22.4	33.6	44.8	67.2	89.6	112.1			
66.7	500	28.0	56.0	84.1	112.1	168.1	224.1	280.2			

Based on an average specific heat of 0.43, average fluid density of 55.6 lb/ft3 and implied 20% safety factor.

Gallons × Temperature Rise(°F)

Kilowatt Hours (KWH) To Heat Air

AMOUNT	TEMPERATURE RISE (°F)								
OF AIR SCFM	50°	100°	150°	200°	300°	400°	500°	600°	800°
100	2	4	6	8	12	16	20	24	32
250	5	10	15	20	30	40	50	60	80
500	10	20	30	40	60	80	100	120	160
1,000	20	40	60	80	120	160	200	240	320
1,250	25	50	75	100	150	200	250	300	400

Assumed insulated duct and inlet air at 70°F and 14.7psia and implied 20% safety factor.

SCFM×Temperature Rise(°F) KWH = -

Percent of Rated Wattage for Various Applied Voltages

	referent of mateur tractage for turious applied totages													
APPLIED							RATED V	OLTAGE						
VOLTAGE	550	480	460	440	415	380	277	240	230	220	208	120	115	110
110	4%	5.2%	5.7%	6.2%	7%	8.4%	16%	21%	23%	25%	28%	84%	91%	100%
115	4.3%	5.7%	6.2%	6.7%	7.6%	9.0%	17%	23%	25%	27%	31%	92%	100%	109%
120	4.8%	6.3%	6.8%	7.4%	8.4%	10%	19%	25%	27%	30%	33%	100%	109%	119%
208	14%	19%	20%	22%	25%	30%	56%	75%	82%	89%	100%			
220	16%	21%	23%	25%	28%	34%	63%	84%	91%	100%	112%			
230	17%	23%	25%	27%	31%	37%	69%	92%	100%	109%				
240	19%	25%	27%	30%	33%	40%	75%	100%	109%	119%				
277	25%	33%	36%	40%	45%	53%	100%							
380	47%	63%	68%	74%	84%	100%						ttage out than the	•	
415	57%	75%	81%	89%	100%	119%		III.		•	-	d Applied	•	_
440	64%	84%	91%	100%	112%			TI				je of the I	0	
460	70%	92%	100%	109%				of the h	neater.					
480	76%	100%	109%	119%				Actual	Wattage	e = Rate		ge × (App		age) ²
550	100%							, istuai	· · a · · · · ·	•	(Ra	ated Volta	ge)²	,

CAUTION: Applying higher than the actual rated voltage to heating elements will increase the watt density (watts/in2), which can lead to premature heater failure and/or damage the material being heated.

FIG. 6.3

FIG. 6.2

100%

Reference Data

		•	
	nve	rcia	nc
UU.			

Conversions——		
Physical Quantity (Units)	Mult. By	To Convert To (Units)
Length		
Inches (in)	2.54	Centimeters (cm)
Feet (ft)	0.3048	Meters (m)
Yards (yd)	0.9144	Meters (m)
Meters (m)	39.37	Inches (in)
Area		
Square Inches (in²)	6.4516	Square Centimeters (cm²)
Square Feet (ft²)	0.0929	Square Meters (m²)
Volume		
Cubic Inches (in³)	16.387	Cubic Centimeters (cm³)
Cubic Feet (ft³)	0.02832	Cubic Meters (m³)
Cubic Feet (ft³)	62.43	Pounds of Water (lb)
Cubic Feet (ft³)	7.481	Gallons of Water (gal)
Cubic Feet (ft³)	28.317	Liters (I)
U.S. Gallons (gal)	0.1337	Cubic Feet (ft³)
U.S. Gallons (gal)	231	Cubic Inches (in³)
U.S. Gallons (gal)	3.785	Liters (I)
U.S. Gallons (gal)	8.345	Pounds of Water (lbs)
Weight		
Kilograms (kg)	2.205	Pounds (lb)
Power		
Horsepower (Hp)	0.7457	Kilowatts (KW)
Boiler Horsepower (Hp)	9.803	Kilowatts (KW)
Energy		
British Thermal Units (BTU)	778.2	Foot-Pounds (lb-ft)
British Thermal Units (BTU)	3.929x10 ⁻⁴	Horsepower-Hours (Hp-hr)
British Thermal Units (BTU)	2.930x10 ⁻⁴	Kilowatt-Hours (KWH)
Foot-Pounds (lb-ft)	1.285x10 ⁻³	British Thermal Units (BTU)
Foot-Pounds (lb-ft)	5.05x10 ⁻⁷	Horsepower-Hours (Hp-hr)
Foot-Pounds (lb-ft)	3.766x10 ⁻⁷	Kilowatt-Hours (KWH)
Horsepower-Hours (Hp-hr)	2545	British Thermal Units (BTU)
Horsepower-Hours (Hp-hr)	1.98x10 ⁶	Foot-Pounds (lb-ft)
Horsepower-Hours (Hp-hr)	0.7457	Kilowatt-Hours (KWH)
Kilowatt-Hours (KWH)	3413	British Thermal Units (BTU)
Kilowatt-Hours (KWH)	2.655x10 ⁶	Foot-Pounds (lb-ft)
Kilowatt-Hours (KWH)	1.341	Horsepower-Hours (Hp-hr)
Mass	0.00507	
Gram (g)	0.03527	Ounces (oz)
Kilogram (kg)	2.205	Pounds (lb)
Pound (lb)	453.6	Grams (g)
Gram (g)	1000	Kilogram (kg)
Volumetric Flow Rate	4.000	
Cubic Feet/Minute (cfm)	1.699	Cubic Meters/Hour (m³/hr)
Cubic Feet/Minute (cfm)	4.72x10 ⁻⁴	Cubic Meters/Second (m³/s)
U.S. Gallons/Minute (gpm)	0.2271	Cubic Meters/Hour (m³/hr)
U.S. Gallons/Minute (gpm)	0.06309	Liters/Second (I/s)
Cubic Meters/Second (m³/s)	2,119	Cubic Feet/Minute (cfm)
Density	10.040	Vilograma/Cubis Mats: (113)
Pounds/Cubic Foot (lb/ft³)	16.018	Kilograms/Cubic Meter (kg/m³)
Pounds/Cubic Foot (lb/ft³)	5.787x10 ⁻⁴	Pounds/Cubic Inch (lb/in³)
Kilograms/Cubic Meter (kg/m³)	0.06243	Pounds/Cubic Foot (lb/ft³)
Grams/Cubic Centimeters (g/cm³)	0.03613	Pounds/Cubic Inch (lb/in³)

_	Tem	perature	Equival	lents-
		perature	Lyurva	

°C	Temp	°F	°C	Temp	°F	°C	Temp	°F
-29	-20	-4	166	330	626	360	680	1256
-23	-10	14	171	340	644	366	690	1274
-18	0	32	177	350	662	371	700	1292
-12	10	50	182	360	680	377	710	1310
-7	20	68	188	370	698	382	720	1328
-1	30	86	193	380	716	388	730	1346
4	40	104	199	390	734	393	740	1364
10	50	122	204	400	752	399	750	1382
16	60	140	210	410	770	404	760	1400
21	70	158	216	420	788	410	770	1418
27	80	176	221	430	806	416	780	1436
32	90	194	227	440	824	421	790	1454
38	100	212	232	450	842	427	800	1472
43	110	230	238	460	860	432	810	1490
49	120	248	243	470	878	438	820	1508
54	130	266	249	480	896	443	830	1526
60	140	284	254	490	914	449	840	1544
66	150	302	260	500	932	454	850	1562
71	160	320	266	510	950	460	860	1580
77	170	338	271	520	968	466	870	1598
82	180	356	277	530	986	471	880	1616
88	190	374	282	540	1004	477	890	1634
93	200	392	288	550	1022	482	900	1652
99	210	410	293	560	1040	488	910	1670
104	220	428	299	570	1058	493	920	1688
110	230	446	304	580	1076	499	930	1706
116	240	464	310	590	1094	504	940	1724
121	250	482	316	600	1112	510	950	1742
127	260	500	321	610	1130	516	960	1760
132	270	518	327	620	1148	521	970	1778
138	280	536	332	630	1166	527	980	1796
143	290	554	338	640	1184	532	990	1814
149	300	572	343	650	1202	538	1000	1832
154	310	590	349	660	1220			
160	320	608	354	670	1238			

How to use this table: Find the temperature you are converting from in the "Temp" column. Look in the column to the right to convert to Fahrenheit or to the left for the conversion to Celsius.

$$(^{\circ}F) = \frac{9}{5} \times {^{\circ}C} + 32$$
 $(^{\circ}C) = \frac{5}{9} \times (^{\circ}F - 32)$

Watt Density (W/in²)

Watt density (WSI) is the amount of watts per square inch of the element sheath heated surface area. It is critical to determine the correct WSI. If the watt density is too high, it may result in premature heater failure, damage to the substance being heated, and/or unsafe conditions. However the lower the watt density, the higher the cost of the heater. (More elements or longer elements are needed for a larger surface area to lower WSI.)

Watt density =
$$\frac{\text{Watts}}{\text{E}_{\text{A}} \times \#_{\text{ELE}} \times \text{H}_{\text{L}}}$$

 E_A = Element Area Per Inch = 3.1416 × Ele. Dia. × 2

 $\#_{ELE}$ = Number of Elements

H₁ = Heated Length = (Imm_L - Cold)

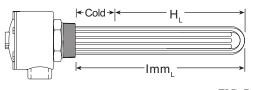


FIG. 7.3

TOLL FREE: 1-877-399-HEAT (4328) TEL: 401-245-3700 FAX: 401-245-9331 EMAIL: wec@warrenonline.com www.warrenonline.com

FIG. 7.1

Reference Data

ANSI Flange Specifications -

150 LB. ANSI BLIND & SLIP ON Flange Specifications

WEC				DIA. OF	# BOLT	DIA. OF	DIA. OF	BOLT		ROX.
MODEL DESIGNATION	SIZE	O.D.	THK.	RAISED FACE	HOLES	BOLT HOLES	BOLTS	CIRCLE DIA.	BLIND	T (LBS.) SLIP ON
	1/2"	31/2"	⁷ / ₁₆ "	1 ³ / ₈ "	4	5/ ₈ "	1/2"	23/8"	2	1
	3/4"	37/8"	1/2"	1 11/16"	4	5/8 "	1/2"	23/4"	2	11/2
F	1"	41/4"	9/ ₁₆ "	2"	4	5/ ₈ "	1/2"	31/8"	2	2
G	11/4"	4 ⁵ / ₈ "	5/ ₈ "	21/2"	4	5/8 "	1/2"	31/2"	3	21/2
Q	11/2"	5"	¹¹ / ₁₆ "	2 ⁷ / ₈ "	4	5/8 "	1/2"	37/8"	3	3
Р	2"	6"	3/4"	35/8"	4	3/4"	5/8 "	43/4"	4	5
R	21/2"	7"	7/8 "	4 ¹ / ₈ "	4	3/4"	5/8 "	51/2"	7	8
С	3"	71/2"	¹⁵ / ₁₆ "	5"	4	3/4"	5/8 "	6"	9	9
U	4"	9"	¹⁵ / ₁₆ "	6 ³ / ₁₆ "	8	3/4"	5/ ₈ "	71/2"	17	13
W	5"	10"	¹⁵ / ₁₆ "	7 5/ ₁₆ "	8	7/8 "	3/4"	81/2"	20	15
Н	6"	11"	1"	81/2"	8	7/8 "	3/4"	91/2"	27	17
K	8"	13 ¹ / ₂ "	1 ¹ / ₈ "	105/8"	8	7/8 "	3/4"	113/4"	47	28
L	10"	16"	1 ³ / ₁₆ "	123/4"	12	1"	7/8 "	141/4"	67	40
M	12"	19"	11/4"	15"	12	1"	7/ ₈ "	17"	123	61
N	14"	21"	1 ³ / ₈ "	16 ¹ / ₄ "	12	1 ¹ / ₈ "	1"	18 ³ / ₄ "	139	83
Т	16"	231/2"	1 ⁷ / ₁₆ "	18 ¹ / ₂ "	16	1 1/8"	1"	211/4"	187	106
V	18"	25"	19/ ₁₆ "	21"	16	11/4"	1 1/8"	223/4"	217	109
E	20"	271/2"	1 11/16"	23"	20	11/4"	1 1/8"	25"	283	148
Z	24"	32"	1 ⁷ / ₈ "	271/4"	20	1 ³ / ₈ "	11/4"	291/2"	415	204

300 LB. ANSI BLIND & SLIP ON Flange Specifications

						c bpec.				
WEC MODEL DESIGNATION	SIZE	O.D.	тнк.	DIA. OF RAISED FACE	# BOLT HOLES	DIA. OF BOLT HOLES	DIA. OF BOLTS	BOLT CIRCLE DIA.		ROX. [(LBS.) SLIP ON
	1/2"	33/4"	⁹ / ₁₆ "	1 ³ / ₈ "	4	5/ ₈ "	1/2"	25/8"	2	11/2
	3/4"	4 ⁵ / ₈ "	5/8 "	1 11/ ₁₆ "	4	3/ ₄ "	5/ ₈ "	31/4"	3	21/2
F	1"	4 ⁷ / ₈ "	¹¹ / ₁₆ "	2"	4	3/4"	5/ ₈ "	31/2"	4	3
G	11/4"	5 ¹ / ₄ "	3/4"	21/2"	4	3/4"	5/8"	37/8"	6	41/2
Q	11/2"	6 ¹ / ₈ "	¹³ / ₁₆ "	27/8"	4	7/ ₈ "	3/4"	41/2"	7	61/2
Р	2"	61/2"	7/8 "	35/8"	8	3/ ₄ "	5/ ₈ "	5"	8	7
R	21/2"	71/2"	1"	41/8"	8	7/8 "	3/4"	5 ⁷ / ₈ "	12	10
С	3"	81/4"	1 ¹ / ₈ "	5"	8	7/8 "	3/4"	65/8"	16	13
U	4"	10"	11/4"	6 ³ / ₁₆ "	8	7/8 "	3/4"	7 ⁷ / ₈ "	28	231/2
W	5"	11"	13/8"	7 5/ ₁₆ "	8	7/ ₈ "	3/4"	91/4"	37	29
Н	6"	121/2"	1 ⁷ / ₁₆ "	81/2"	12	7/ ₈ "	3/4"	105/8"	48	36
K	8"	15"	15/8"	105/8"	12	1"	7/8 "	13"	79	56
L	10"	171/2"	1 ⁷ / ₈ "	123/4"	16	1 1/8"	1"	15 ¹ / ₄ "	122	77
M	12"	201/2"	2"	15"	16	1 1/4"	1 ¹ / ₈ "	173/4"	183	113
N	14"	23"	21/8"	16 ¹ / ₄ "	20	11/4"	1 ¹ / ₈ "	201/4"	241	159
Т	16"	251/2"	21/4"	181/2"	20	1 ³ / ₈ "	11/4"	221/2"	315	210
V	18"	28"	23/8"	21"	24	1 ³ / ₈ "	11/4"	243/4"	414	253
E	20"	301/2"	21/2"	23"	24	1 ³ / ₈ "	11/4"	27"	515	307
Z	24"	36"	23/4"	271/4"	24	1 ⁵ / ₈ "	11/2"	32"	800	490

1/16" raised face included in flange thickness. The above ANSI flange information is just for reference and is based on steel ANSI flanges. The actual weights vary based on manufacturer and material type. Dimensions are in inches and weights are in pounds.

Std. Pipe Specifications-

SIZE	SCH.	O.D.	WALL THK.
1/2"	40 80	0.840	0.109 0.147
3/4"	10 40 80	1.050	0.830 0.113 0.154
1"	10 40 80	1.315	0.109 0.133 0.179
1 1/4"	10 40 80	1.660	0.109 0.140 0.191
1 1/2"	10 40 80	1.900	0.109 0.145 0.200
2"	10 40 80	2.375	0.109 0.154 0.218
2 ¹ / ₂ "	10 40 80	2.875	0.120 0.203 0.276
3"	10 40 80	3.500	0.120 0.216 0.300
4"	10 40 80	4.500	0.120 0.237 0.337
5"	10 40 80	5.563	0.134 0.258 0.375
6"	10 40 80	6.625	0.134 0.280 0.432
8"	10 40 80	8.825	0.148 0.322 0.500
10"	10 40 80	10.75	0.165 0.365 0.594
12"	10 STD 40	12.75	0.180 0.375 0.406
14"	10 STD 40	14.0	0.250 0.375 0.438
16"	10 STD	16.0	0.250 0.375
18"	10 STD	18.0	0.250 0.375
20"	10 STD	20.0	0.250 0.375
24"	10 STD	24.0	0.250 0.375

IG. 8.1 –

FIG. 8.2

TOLL FREE: 1-877-399-HEAT (4328) TEL: 401-245-3700 FAX: 401-245-9331

BR-101 TOLL FREE: 1-8//-399-HEAT (4328) T EMAIL: wec@warrenonline.com

www.warrenonline.com

Reference Data

Watt Density Guidelines

watt Density Guidemies								
MATERIAL TO BE HEATED	MAX. OPERATING TEMP.	MAX. WATT DENSITY	RECOMMENDED SHEATH MATERIAL					
Acid Solutions (Mild)	180	40	316SS					
or Electroplating Baths								
Air	C.F.	C.F.	IC					
Alkaline Solutions (Mild)	212	40	321SS					
Asphalt, Tar	200-500	4-10	S					
Caustic Soda								
2%	210	45	IC					
10%	210	25	IC					
75%	180	25	IC					
Degreasing Solution	275	23	S					
Dyes & Pigments	212	23	321SS					
Ethylene Glycol (100% Solution)	300	30	S					
Freon Gas	300	2-5	S					
Fuel Oils								
Grade 1 & 2 (Distillate)	200	23	S					
Grade 4 & 5 (Residual)	200	16	S					
Grade 6 & Bunker C (Residual)	160	12	S					
Gasoline, Kerosene	300	20	S					
Glycerine	50	40	IC					
Glycerol	212	23	IC					
Heat Transfer Oils (Static)								
Low Temp	500	16	S					
High Temp	600	10	S					
Heat Transfer Oils (Circulating)								
Low Temp	500	20	S					
High Temp	600	15	S					
Linseed Oil	150	50	S					
Lubrication Oils								
SAE 10-30	250	23	S					
SAE 40-50	250	13	S					
Magnesium Sulfate	212	40	304SS					
Manganese Sulfate	212	40	316SS					
Mineral Oil								
Low Temp	200	23	S					
High Temp	400	16	S					
Molasses	100	4-5	321SS					
Paraffin or Wax (Liquid State)	150	16	S					
Perchloroethylene	200	23	S					
Potassium Chloride	212	40	316SS					
Sodium Cyanide	140	40	IC					
Sodium Hydroxide	C.F.	C.F.	C.F.					
Trichlorethylene	150	20	S					
Vegetable Oil & Shortening	400	30	321SS					
Water								
Process	212	60	IC					
Deionized	212	60	321SS					
Potable	212	60	С					

C.F. = Consult factory, C = Copper, IC = Incoloy, S = Steel, SS = Stainless Steel The "Max. Operating Temperatures", "Max. Watt Densities", & "Recommended Sheath Materials" listed above should only be used as a guide. Warren Electric Corporation cannot warrant any immersion heater against failure by sheath corrosion and it is the responsibility of the purchaser to make the final choice of both sheath material and watt density. For a more complete list of materials visit our website.

Teriiliai	Enclosures	
Without Thermostat	With Thermostat	Description
23/4"	4 ¹ / ₈ " 5" →	General Purpose NEMA 1 enclosure intended for use indoors, primarily to prevent accidental contact of personnel with the enclosed equipment. Used in areas where unusual service conditions do not exist.
2 ⁷ / ₈ " 2 ⁷ / ₈ "	4 ³ / ₄ " ↓ 5 ³ / ₄ " ↓	Explosion-Resistant NEMA 7 enclosure intended for use indoors, where resistance to explosion is required.
2 ⁷ / ₈ " - 3 ³ / ₄ "	4 ³ / ₄ " 5 ³ / ₄ " 4 ⁷ / ₈ "	Weather-Resistant NEMA 4 enclosure intended for indoor or outdoor use. Used primarily to provide a degree of protection against windblown dust and rain, splash- ing water, hose- directed water, and external ice formation.
Dimensions vary according to screw plug size	Dimensions vary according to screw plug size	"Helmet Head" Rugged compact screw plug heater enclosure for indoor use to provide optimal protection from physical damage.
1 ⁵ / ₈ " → 3 ⁵ / ₈ " 1 5/ ₈ "	3 ¹ /2" ← 3 ⁵ /8"→	General Pupose Economy NEMA 1 enclosure intended for use indoors, primarily to prevent accidental contact of personnel with the enclosed equipment. Used where economy is a factor and in areas where unusual service conditions do not exist.

TOLL FREE: 1-877-399-HEAT (4328)

TEL: 401-245-3700

FAX: 401-245-9331

Page 9

EMAIL: wec@warrenonline.com

FIG. 9.1 -

www.warrenonline.com

BR-101

MODEL NUMBER DESCRIPTION

Warren Electric has established a model numbering system that is unique in that it allows you to identify most specifications, such as wattage, voltage, flange or screw plug size, immersed length, element sheath material, etc., just by looking at the model number.

- PRESSURE RATING: The maximum pressure rating is included in the model number. If no pressure rating is indicated, the pressure rating is 150 PSI.
- 2 TEMPERATURE CONTROL: Temperature control designations are indicated by either an "X" which signifies no control or a number "1" through "8" designating a thermostat, thermostat temperature range, thermocouple, or RTD. Note: The model number does not indicate the type of thermostat, thermocouple, or RTD.
- 3 FLANGE OR SCREW PLUG SIZE: Flange or Screw Plug sizes are designated with a letter.
- 4 FLANGE OR SCREW PLUG CONSTRUCTION: Each standard heater type has its own letter designation.
- 5 WATTAGE: Indicates Kilowatt rating.
- 6 **VOLTAGE**: Indicates nominal operating voltage. "1" through "6" indicate standard voltages, all other voltages are designated by the 3-digit voltage number.
- 7 IMMERSED LENGTH: Measured from the "wet-side" face of the flange or screw plug to the end of the hair pin end of the element(s). Indicated in inches.
- 8 **ELEMENT SHEATH MATERIAL**: Indicates the element sheath material. If no letter is indicated, the sheath material is steel.
- 9 **OPTIONAL MODIFICATIONS**: Non-standard options such as weather-resistant terminal enclosure, etc. are indicated in this section.
- 10 PHASE: Indicates Single or Three phase. If there is no designation then the unit is single phase.
- (11) **CIRCUITS**: Indicates the quantity of circuits. If there is no designation then the unit is wired as a single circuit.

XCF-5-2-34*3: The model number featured below has a maximum pressure rating of 150 PSI with no temperature control. It has a 3" x 150# ANSI steel flange, with an output of 5KW (at 240 V, 3 phase, one circuit). The immersed length is 34 inches with steel elements and a general purpose terminal enclosure.

1 (-)	X 2	<u>c</u> 3	F 4	- <u>5</u> - <u>2</u> - <u>34</u> - <u>5</u> - <u>6</u> - <u>7</u>	8 (-)	9	*3 10	<u>H</u>
)		_		

PRESSURE TEMPERATURI CONTROL	FLANGE OR SCREW PLUG SIZE	CONSTRUCTION TYPE	WATTAGE (KW)	VOLTAGE (VOLTS)	IMMERSED LENGTH (INCHES)	ELEMENT SHEATH	OPTIONAL MODIFICATIONS	PHASE	CIRCUITS
Blank = 150 PSI X = No Thermostat, No Thermocouple and No RTD 1 = 0 - 100 °F 2 = 60 - 250 °F 3 = 175 - 550 °F 4 = Other Ranges 5 = Thermocouple 7 = RTD 8 = Non-Standard Ranges - Not to exceed 250 °F Max. Setting A = WE Fuel Oil B = Preheater D = **	F = 1" G = 1-1/4" Q = 1-1/2" P = 2" R = 2-1/2" C = 3" U = 4" W = 5" H = 6" K = 8" L = 10" M = 12"	F = Flange S = NPT Screw Plug J = Jacketed Flanged Circulation Heater JS = Jacketed Screw plug Circulation Heater T = Over-the-side	Values Shown In KW	1 = 120V 2 = 240V 3 = 380V 4 = 480V 5 = 550V 6 = 600V Others - Use Full Numbers	Values Shown In Inches	Blank = Steel C = Copper IC = Incoloy IL = Inconel SS = Stainless Steel R after above letter indicates Removable Elements	Blank=General Purpose Enclosure LT=Weather- Resistant Enclosure EP=Explosion- Resistant Enclosure EP/LT =Explosion/ Weather- Resistant Enclosure HH=Helmet Head Enclosure Y = Any other Specification	Blank = Single Phase *3 = Three Phase	Blank = 1 Circuit +2 = 2 Circuits +3 = 3 Circuits etc

^{*} WEC Fuel Oil Models - Special Industrial Flange and Thermostat for Residual Fuel Oils. Request WEC Oil Heater Catalog

TOLL FREE: 1-877-399-HEAT (4328) TEL: 401-245-3700 FAX: 401-245-9331 EMAIL: wec@warrenonline.com www.warrenonline.com

Page 10

^{**} Used with A or B Types such as AD or BD and indicates WEC Fuel Oil Heater Thermostat with additional Interlock Control.

QUICK QUOTE

Warren Electric Corporation

36 Franklin Street, P.O. Box 86, Warren, Rhode Island 02885 USA QUICK QUOTE

TOLL FREE: 877 399-4328 TEL: 401 245-3700 FAX: 401 245-9331

or help with your electric eater application, please omplete as much Name								
complete as much								
information as possible.	Address							
An applications engineer or technical salesperson will	City							
respond to help you with	Tel: ()							
your specific needs.	EMAIL ADDRESS:				WEI	B SITE: _		
Please () MAIL, () FA Delivery required () ASA	X, or () EMAIL a	quotation for	R QUOT the following.	TATI(ON	Electric		of details to an ease let us know on!
() REPLACEMENT I	HEATER Model#					(Ouantity	
The heater failed due to: (
OR	Please complete	as much ir	nformation	as pos	sible o	or applic	able:	
My Application Requires: A. () Flanged B. () Screw P C. () Fuel Oil D. () Hydrauli E. () Circulat F. () Other POWER - Required Wattag Volts Fluid/Gas to be heate Element Sheath Mate Maximum Immersion	ic/Lube Oil Heater(s) ion Heater(s) ge KW or Phase d erial Length"	Watts (if u Watt Dens Cold Leac Flange/Pla	Insulation: ASME Certi Inlet & Out () Flanged () Drain Inknown - refer Sity If Wet Side ug Material Flange/Plug Size	Heater(s) Type fication let: Size I () F ()Ve to POW W:	Details. Required NPT (Insulati d: (_) No, Locat) MNPT) OTHER DUIREMEN s per square ate desired (if specific Operati	ion & Jacket: (Thickness () Yes, () tion (Sketch or T below-A & e inch - specify minimum if ap materials are ing Pressure	Maybe r indicate) B) r if known) pplicable) required)
Mounting Installation Terminal Enclosure (Thermostat () No	rre(^() Horizontal () Ver () Standard () We () Yes Temperature () Yes If Yes, Type	tical If V ather-Resistant Range () 0°-	ertical, Termina	l Enclosi n-Resista o-250°F	ant () () 1	Up () D) Other 75°-550°F	Oown	
Tank Dimensions _ Tank Insulation (Desired Temperatur () B. I Need to Increas	temperature in Tank Temperature Dia. x L or No () Yes Type (°F or °C)	L x _ pe/Thickness _ Ambie	ent Temperature	Clo Tan (worst ca	sed Top k () V	nplete both (_) No (_ Vertical (_) (°F	_) Yes) Horizontal or °C)	below.
Flow rate	(°F or °C) Desir	() pounds	per (F or %	hour,	owabie i	minute,	or	second

Please do not hesitate to call, write, or FAX for more assistance in sizing, calculating, or any other guidance you require to determine your electric heater needs...